Manara - Qatar Research Repository
Browse

Natural Gas Sweetening Using an Energy-Efficient, State-of-the-Art, Solid–Vapor Separation Process

Download (2.62 MB)
journal contribution
submitted on 2023-05-28, 09:46 and posted on 2023-05-28, 10:20 authored by Hani Ababneh, Ahmed AlNouss, Iftekhar A. Karimi, Shaheen A. Al-Muhtaseb

With the anticipated rise in global demand for natural gas (NG) and liquefied natural gas (LNG), sour gas reserves are attracting the attention of the gas industry as a potential resource. However, to monetize these reserves, sour natural gas has to be sweetened by removing acid gases (carbon dioxide and/or hydrogen sulfide) before liquefaction. The solidification of these acid gases could be the basis for their separation from natural gas. In this study, a state-of-the art solid-vapor (SV) separation unit is developed for removal of acid gases from methane and simulated using a customized Aspen Plus operation unit. The operating principles and conditions, mathematical model, and performance results are presented for the SV unit. Further performance analyses, means of optimization and comparisons to conventional methods used by the industry were studied. Results showed that for similar sweet gas purity, the developed SV unit consumes only 27% of the energy required by the amine sweetening unit. Furthermore, it saves on capital costs, as it requires less equipment and does not suffer from high levels of corrosion.

Other Information

Published in: Energies
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: http://dx.doi.org/10.3390/en15145286 

Funding

Open Access funding provided by the Qatar National Library

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Qatar University
  • College of Engineering - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC