Manara - Qatar Research Repository
Browse
molecules-26-03736.pdf (2.87 MB)

Natural Alkaloid Compounds as Inhibitors for Alpha-Synuclein Seeded Fibril Formation and Toxicity

Download (2.87 MB)
journal contribution
submitted on 2024-05-14, 05:50 and posted on 2024-05-14, 05:51 authored by Simona S. Ghanem, Hend S. Fayed, Qi Zhu, Jia-Hong Lu, Nishant N. Vaikath, Janarthanan Ponraj, Said Mansour, Omar M. A. El-Agnaf

The accumulation and aggregation of α-synuclein (α-syn) is the main pathologic event in Parkinson’s disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-Syn-seeded fibril formation and its induced toxicity occupy a major role in PD pathogenesis. Thus, assessing compounds that inhibit this seeding process is considered a key towards the therapeutics of synucleinopathies. Using biophysical and biochemical techniques and seeding-dependent cell viability assays, we screened a total of nine natural compounds of alkaloid origin extracted from Chinese medicinal herbs. Of these compounds, synephrine, trigonelline, cytisine, harmine, koumine, peimisine, and hupehenine exhibited in vitro inhibition of α-syn-seeded fibril formation. Furthermore, using cell viability assays, six of these compounds inhibited α-syn-seeding-dependent toxicity. These six potent inhibitors of amyloid fibril formation and toxicity caused by the seeding process represent a promising therapeutic strategy for the treatment of PD and other synucleinopathies.

Other Information

Published in: Molecules
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/molecules26123736

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Health and Life Sciences - HBKU
  • Qatar Environment and Energy Research Institute - HBKU
  • Qatar Biomedical Research Institute - HBKU
  • Neurological Disorders Research Center - QBRI

Usage metrics

    College of Health and Life Sciences - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC