Manara - Qatar Research Repository
Browse

Multi-omics and machine learning reveal context-specific gene regulatory activities of PML::RARA in acute promyelocytic leukemia

journal contribution
submitted on 2024-08-26, 07:56 and posted on 2024-08-26, 07:58 authored by William Villiers, Audrey Kelly, Xiaohan He, James Kaufman-Cook, Abdurrahman Elbasir, Halima Bensmail, Paul Lavender, Richard Dillon, Borbála Mifsud, Cameron S. Osborne

The PML::RARA fusion protein is the hallmark driver of Acute Promyelocytic Leukemia (APL) and disrupts retinoic acid signaling, leading to wide-scale gene expression changes and uncontrolled proliferation of myeloid precursor cells. While known to be recruited to binding sites across the genome, its impact on gene regulation and expression is under-explored. Using integrated multi-omics datasets, we characterize the influence of PML::RARA binding on gene expression and regulation in an inducible PML::RARA cell line model and APL patient ex vivo samples. We find that genes whose regulatory elements recruit PML::RARA are not uniformly transcriptionally repressed, as commonly suggested, but also may be upregulated or remain unchanged. We develop a computational machine learning implementation called Regulatory Element Behavior Extraction Learning to deconvolute the complex, local transcription factor binding site environment at PML::RARA bound positions to reveal distinct signatures that modulate how PML::RARA directs the transcriptional response.

Other Information

Published in: Nature Communications
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1038/s41467-023-36262-0

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU
  • Qatar Computing Research Institute - HBKU