Manara - Qatar Research Repository
Browse

Machine Learning Approach for Effective Ranking of Researcher Assessment Parameters

Download (2.64 MB)
journal contribution
submitted on 2024-02-18, 12:03 and posted on 2024-02-18, 12:04 authored by Bilal Ahmed, Li Wang, Ahmad Sami Al-Shamayleh, Muhammad Tanvir Afzal, Ghulam Mustafa, Wagdi Alrawagfeh, Adnan Akhunzada

The measurement and assessment of academic performance is now a fact of scientific life. This assessment guides the scientific community in making significant judgments such as selecting appropriate candidates for various positions, nominating individuals for scientific awards, and awarding scholarships or grants. Several research assessment parameters have been proposed by researchers to identify the most influential scholars. In the literature, researchers have employed a combination of hypothetical and fictional scenarios, as well as manual approaches, to identify the best assessment parameters. Moreover, there is no established benchmark available for assessing these parameters. The current study employs an innovative machine learning approach, the Dynamic Random Forest with Brouta Optimizer called “BorutaRanked Forest”, to prioritize the assessment metrics for researchers by calculating the importance score for each metric. Thirty different assessment metrics have been evaluated on a comprehensive dataset of researchers that contains awardees researchers and non-awardees researchers of three decades from (1990 to 2023). The main purpose of this evaluation is to determine the potential value and significance of each parameter relative to others. In addition, the position of awardees researchers is examined at different percentile ranges form Top 10% to Top 100% in the ranked lists of each parameter. During the individual evaluation of each parameter, we uncovered several intriguing patterns in the data. Our findings indicate that the normalized h-index is a particularly effective assessment parameter for the impact evaluation of researchers in the domain of mathematics. An analysis has been conducted to explore the correlation between parameters and awarding societies, examining the associations between different metrics and specific awarding societies.

Other Information

Published in: IEEE Access
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1109/access.2023.3336950

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

IEEE

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • University of Doha for Science and Technology
  • College of Computing and Information Technology - UDST