Manara - Qatar Research Repository
Browse
DOCUMENT
10.1186_s12859-023-05232-0.pdf (1.7 MB)
DOCUMENT
supp_12859_2023_5232_MOESM1_ESM.pdf (195.54 kB)
1/0
2 files

MSLP: mRNA subcellular localization predictor based on machine learning techniques

journal contribution
submitted on 2024-02-21, 07:54 and posted on 2024-02-21, 07:55 authored by Saleh Musleh, Mohammad Tariqul Islam, Rizwan Qureshi, Nehad M. Alajez, Tanvir Alam

Background

Subcellular localization of messenger RNA (mRNAs) plays a pivotal role in the regulation of gene expression, cell migration as well as in cellular adaptation. Experiment techniques for pinpointing the subcellular localization of mRNAs are laborious, time-consuming and expensive. Therefore, in silico approaches for this purpose are attaining great attention in the RNA community.

Methods

In this article, we propose MSLP, a machine learning-based method to predict the subcellular localization of mRNA. We propose a novel combination of four types of features representing k-mer, pseudo k-tuple nucleotide composition (PseKNC), physicochemical properties of nucleotides, and 3D representation of sequences based on Z-curve transformation to feed into machine learning algorithm to predict the subcellular localization of mRNAs.

Results

Considering the combination of the above-mentioned features, ennsemble-based models achieved state-of-the-art results in mRNA subcellular localization prediction tasks for multiple benchmark datasets. We evaluated the performance of our method in ten subcellular locations, covering cytoplasm, nucleus, endoplasmic reticulum (ER), extracellular region (ExR), mitochondria, cytosol, pseudopodium, posterior, exosome, and the ribosome. Ablation study highlighted k-mer and PseKNC to be more dominant than other features for predicting cytoplasm, nucleus, and ER localizations. On the other hand, physicochemical properties and Z-curve based features contributed the most to ExR and mitochondria detection. SHAP-based analysis revealed the relative importance of features to provide better insights into the proposed approach.

Availability

We have implemented a Docker container and API for end users to run their sequences on our model. Datasets, the code of API and the Docker are shared for the community in GitHub at: https://github.com/smusleh/MSLP.

Other Information

Published in: BMC Bioinformatics
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1186/s12859-023-05232-0

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU
  • Qatar Biomedical Research Institute - HBKU
  • College of Health and Life Sciences - HBKU

Methodology

In this article, we propose MSLP, a machine learning-based method to predict the subcellular localization of mRNA. We propose a novel combination of four types of features representing k-mer, pseudo k-tuple nucleotide composition (PseKNC), physicochemical properties of nucleotides, and 3D representation of sequences based on Z-curve transformation to feed into machine learning algorithm to predict the subcellular localization of mRNAs.

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC