Manara - Qatar Research Repository
Browse
1-s2.0-S0263822320334309-main.pdf (3.91 MB)

Khalasa date palm leaf fiber as a potential reinforcement for polymeric composite materials

Download (3.91 MB)
journal contribution
submitted on 2023-09-14, 10:15 and posted on 2023-09-18, 13:09 authored by Elsadig Mahdi, Daniel R. Hernández Ochoa, Ashkan Vaziri, Aamir Dean, Murat Kucukvar

The circular economy (CE) proposes a closed‐loop supply chain‐based production system and reduces the ecological systems' negative impacts. CE proposes a paradigm shift from a linear economy to a circular economy with the principles of 3Rs: reduce, reuse, and recycle. CE applications can be a viable option for the sustainable production of polymeric composite materials by decreasing the cost and improving product lifetimes and mechanical performance. This paper explores Khalasa date palm leaf fiber (KDPLF) as a reinforcement for polymeric composite materials. To this end, it is essential to examine their morphology, material properties, chemical composition, and water uptake. The investigated fiber was obtained from the Qatar University farm. The morphology examination was carried out using scanning electron microscopy. Thermogravimetric analysis has been used to examine the thermal stability of KDPLF. Morphological examination indicates that the lumen size for Khalasa is 32.8 ± 15.9 µm. The SEM morphology of the KDPLF cross‐section showed high hemicellulose content. Tensile properties revealed that Khalasa fiber had tensile strength/tensile modulus of 47.99 ± 13.58 MPa and 2.1 ± 0.40 GPa, respectively. The results are also demonstrated that high variation in the mechanical properties and morphology was showed in KDPLF. Water uptake has significant effects on the properties of KDPLF/epoxy composite. Accordingly, as the moisture absorption of KDPLF/epoxy increases, its strength and stiffness decrease. As the moisture absorption of KDPLF/epoxy increases, its toughness increases.

Other Information

Published in: Composite Structures
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.compstruct.2020.113501

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Qatar University
  • College of Engineering - QU
  • Ministry of Municipality and Environment - State of Qatar (-2021)

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC