Manara - Qatar Research Repository
Browse
10.1016_j.fuel.2023.127474.pdf (1.39 MB)

Investigation of co-pyrolysis blends of camel manure, date pits and plastic waste into value added products using Aspen Plus

Download (1.39 MB)
journal contribution
submitted on 2024-01-23, 06:14 and posted on 2024-01-23, 06:15 authored by Aisha Al-Rumaihi, Muhammad Shahbaz, Gordon Mckay, Tareq Al-Ansari

The increasing demand for energy worldwide and growing environmental concerns is the impetus for greater integration of alternate sustainable technologies. In parallel, the efficient and safe management of plastic waste is needed since it is reported that only 9 % of plastic is recycled, while 76 % is landfilled. This study performs a co-pyrolysis of four main types of feedstocks, such as camel manure (CM), date pits (DP), low-density polyethylene (LDPE) and high-density polyethylene (HDPE). Additionally, different mixing scenarios of those feedstocks are also studied. For this purpose, a simulated equilibrium model for the pyrolysis process is developed using Aspen Plus®, which also investigates the impact of waste types, blends, and temperature on pyrolysis product distribution. Pyrchar and pyrgas production are major products for camel manure and date pits and also for plastic wastes with higher production. In biomass feedstock, the highest production of pyrgas is 623.78 kg/hr for camel manure and 555.69 kg/hr for date pits at 600 °C. The maximum production of pyrchar is 485.43 kg/hr for LDPE and 618.46 kg/hr for plastic feedstock (HDPE). As for mixing scenarios, the production of pyrchar is maximum at a ratio of 0.2CM: 0.2DP: 0.3LDPE: 0.3HDPE (S6) and 0CM: 0DP: 0.5LDPE: 0.5HDPE (S7) and a temperature of 600 °C resulting in 448.15 kg/hr and 614.69 kg/hr respectively. The pyrgas production at mixing ratio of 0.25CM: 0.25DP: 0.25LDPE: 0.25HDPE (S5) and 0.5CM: 0.5DP: 0LDPE: 0HDPE (S8) is maximum with 405.21 kg/hr and 589.24 kg/hr respectively at a temperature of 600 °C. Pyroil production is highest at a temperature of 300 °C for all scenarios resulting in a maximum production of date pits of 309.92 kg/hr.

Other Information

Published in: Fuel
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.fuel.2023.127474

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC