Manara - Qatar Research Repository
10.1109_access.2020.3019365.pdf (1.06 MB)

Interval-Valued Features Based Machine Learning Technique for Fault Detection and Diagnosis of Uncertain HVAC Systems

Download (1.06 MB)
journal contribution
submitted on 2023-08-24, 10:26 and posted on 2023-08-29, 07:38 authored by Sondes Gharsellaoui, Majdi Mansouri, Mohamed Trabelsi, Mohamed-Faouzi Harkat, Shady S. Refaat, Hassani Messaoud

The operation of heating, ventilation, and air conditioning (HVAC) systems is usually disturbed by many uncertainties such as measurement errors, noise, as well as temperature. Thus, this paper proposes a new multiscale interval principal component analysis (MSIPCA)-based machine learning (ML) technique for fault detection and diagnosis (FDD) of uncertain HVAC systems. The main goal of the developed MSIPCA-ML approach is to enhance the diagnosis performance, improve the indoor environment quality, and minimize the energy consumption in uncertain building systems. The model uncertainty is addressed by considering the interval-valued data representation. The performance of the proposed FDD is investigated using sets of synthetic and emulated data extracted under different operating conditions. The presented results confirm the high-efficiency of the developed technique in monitoring uncertain HVAC systems due to the high diagnosis capabilities of the interval feature-based support vector machines and k-nearest neighbors and their ability to distinguish between the different operating modes of the HVAC system.

Other Information

Published in: IEEE Access
See article on publisher's website:


Open Access funding provided by the Qatar National Library.



  • English



Publication Year

  • 2020

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Texas A&M University at Qatar