Improving plasticity of metallic glass by electropulsing-assisted surface severe plastic deformation
Using either electropulsing (EP) or surface severe plastic deformation (SSPD) to process metallic glasses can improve their plasticity, however, the moderate improvement in plasticity does not warrant a commercial usage. This work, for the first time, demonstrates the integration of electropulsing and surface severe plastic deformation is much more effective in improving the plasticity of metallic glasses than EP or SSPD treatment alone, opening a new avenue towards an unprecedented combination of strength and plasticity in metallic glasses. It is found that SSPD can generate microstructure heterogeneity featured by a mixture of matrix and plastically displaced regions with increased atomic volume. When applying EP and SSPD simultaneously, a synergistic effect occurs to produce a hybrid network with excess free volume and nanocrystals uniformly embedded in amorphous matrix. Molecular dynamics simulation and fracture surface analysis further reveal that the hybrid network is able to effectively reduce shear band localization, and therefore delay the fracture of metallic glasses.
Other Information
Published in: Materials & Design
License: http://creativecommons.org/licenses/by-nc-nd/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.matdes.2019.107581
Funding
Open Access funding provided by the Qatar National Library.
History
Language
- English
Publisher
ElsevierPublication Year
- 2019
License statement
This Item is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Institution affiliated with
- Hamad Bin Khalifa University
- Qatar Environment and Energy Research Institute - HBKU