Manara - Qatar Research Repository
Browse
nanomaterials-09-00122-v3.pdf (2.81 MB)

Impaired Liver Size and Compromised Neurobehavioral Activity are Elicited by Chitosan Nanoparticles in the Zebrafish Embryo Model

Download (2.81 MB)
journal contribution
submitted on 2024-03-14, 07:53 and posted on 2024-03-14, 07:53 authored by Haissam Abou-Saleh, Nadin Younes, Kashif Rasool, Manaf Younis, Rafael Prieto, Hadi Yassine, Khaled Mahmoud, Gianfranco Pintus, Gheyath Nasrallah

The use of chitosan nanoparticles (ChNPs) in various biological and environmental applications is attracting great interest. However, potential side effects related to ChNP toxicity remain the major limitation hampering their wide application. For the first time, we investigate the potential organ-specific (cardiac, hepatic, and neuromuscular) toxicity of ChNPs (size 100–150 nm) using the zebrafish embryo model. Our data highlight the absence of both acute and teratogenic toxic effects of ChNPs (~100% survival rate) even at the higher concentration employed (200 mg/L). Although no single sign of cardiotoxicity was observed upon exposure to 200 mg/L of ChNPs, as judged by heartbeat rate, the corrected QT interval (QTc, which measures the time between the start of the Q wave and the end of the T wave in the heart's electrical cycle), maximum cardiac arrest, and ejection fraction assays, the same dosage elicited the impairment of both liver size (decreased liver size, but without steatosis and lipid yolk retention) and neurobehavioral activity (increased movement under different light conditions). Although the observed toxic effect failed to affect embryo survival, whether a prolonged ChNP treatment may induce other potentially harmful effects remains to be elucidated. By reporting new insights on their organ-specific toxicity, our results add novel and useful information into the available data concerning the in vivo effect of ChNPs.

Other Information

Published in: Nanomaterials
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/nano9010122

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • College of Arts and Sciences - QU
  • Biomedical Research Center - QU
  • Qatar University Health - QU
  • College of Medicine - QU HEALTH
  • Hamad Bin Khalifa University
  • Qatar Environment and Energy Research Institute - HBKU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC