Manara - Qatar Research Repository
Browse
10.1002_cjce.24152.pdf (1.7 MB)

Impact of aluminium acetate particles size on the gelation kinetics of polyacrylamide‐based gels: Rheological and molecular simulation study

Download (1.7 MB)
journal contribution
submitted on 2023-03-15, 08:02 and posted on 2023-03-16, 06:21 authored by Ahmed Hamza, Mohamed Shamlooh, Ibnelwaleed A. Hussein, Mustafa S. Nasser, Abdulmujeeb T. Onawole, Musaab Magzoub, Saeed Salehi

Inorganically crosslinked polymers have been intensively implemented for conformance control treatments in oil and gas wells at low temperatures (<90°C) because of their faster gelation time compared to organically crosslinked gels. Crosslinkers such as chromium acetate are known to be toxic, and aluminium-based alternatives have been introduced. This study aims to investigate the impact of aluminium acetate (AlAc) particle size on the gelation kinetics of polyacrylamide (PAM)-based gels at a pH of 5 and temperature of 75°C. Moreover, bentonite is used as an additive to delay the crosslinking of PAM/AlAc gels. Reducing the particle size increases the specific surface area of the particles and provides more crosslinking sites. Therefore, lower PAM concentrations (up to 5 wt.%) could be used without AlAc settling. Using 7 wt.% PAM/1 wt.% AlAc with sizes of 25 and 48 μm revealed a crosslinking time of 17 and 115 min, respectively. The addition of bentonite at low crosslinker concentrations (0.5–1 wt.%) did not decrease the gel strength of 7 wt.% PAM/1 wt.% AlAc significantly. The gelation time was extended after adding 1 wt.% bentonite to the formulation where the delay was attributed to the adsorption of AlAc on the bentonite surface that was illustrated by molecular simulation.

Other Information

Published in: The Canadian Journal of Chemical Engineering
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: http://dx.doi.org/10.1002/cjce.24152

History

Language

  • English

Publisher

Wiley

Publication Year

  • 2021

Institution affiliated with

  • Qatar University

Usage metrics

    Manara - Qatar Research Repository

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC