Manara - Qatar Research Repository
Browse
1/1
2 files

Identification of distinct circulating microRNAs in acute ischemic stroke patients with type 2 diabetes mellitus

journal contribution
submitted on 2024-04-16, 13:17 and posted on 2024-04-16, 13:18 authored by Salman M. Toor, Eman K. Aldous, Aijaz Parray, Naveed Akhtar, Yasser Al-Sarraj, Essam M. Abdelalim, Abdelilah Arredouani, Omar El-Agnaf, Paul J. Thornalley, Sajitha V. Pananchikkal, Ghulam Jeelani Pir, Raheem Ayadathil Thazhhe Kuni, Ashfaq Shuaib, Nehad M. Alajez, Omar M. E. Albagha

Stroke is the second leading cause of global mortality and continued efforts aim to identify predictive, diagnostic, or prognostic biomarkers to reduce the disease burden. Circulating microRNAs (miRNAs) have emerged as potential biomarkers in stroke. We performed comprehensive circulating miRNA profiling of ischemic stroke patients with or without type 2 diabetes mellitus (T2DM), an important risk factor associated with worse clinical outcomes in stroke. Serum samples were collected within 24 h of acute stroke diagnosis and circulating miRNAs profiled using RNA-Seq were compared between stroke patients with T2DM (SWDM; n = 92) and those without T2DM (SWoDM; n = 98). Our analysis workflow involved random allocation of study cohorts into discovery (n = 96) and validation (n = 94) datasets. Five miRNAs were found to be differentially regulated in SWDM compared to SWoDM patients. Hsa-miR-361-3p and -664a-5p were downregulated, whereas miR-423-3p, -140-5p, and -17-3p were upregulated. We also explored the gene targets of these miRNAs and investigated the downstream pathways associated with them to decipher the potential pathways impacted in stroke with diabetes as comorbidity. Overall, our novel findings provide important insights into the differentially regulated miRNAs, their associated pathways and potential utilization for clinical benefits in ischemic stroke patients with diabetes.

Other Information

Published in: Frontiers in Cardiovascular Medicine
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3389/fcvm.2022.1024790

History

Language

  • English

Publisher

Frontiers

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Health and Life Sciences - HBKU
  • Qatar Biomedical Research Institute - HBKU
  • Diabetes Research Center - QBRI
  • Neurological Disorders Research Center - QBRI
  • Hamad Medical Corporation
  • Neuroscience Institute - HMC
  • Qatar Genome Programme

Usage metrics

    College of Health and Life Sciences - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC