Manara - Qatar Research Repository
Browse
10.1007_s12678-022-00772-0.pdf (2.85 MB)

Highly Active Lanthanum Perovskite Electrocatalysts (LaMnxCo1-xO3 (0 ≤ x ≤ 1)) by Tuning the Mn:Co Ratio for ORR and MOR in Alkaline Medium

Download (2.85 MB)
journal contribution
posted on 2022-11-22, 21:15 authored by Sadiyah Shafath, Khulood Logade, Anchu Ashok, Anand Kumar, Ibrahim M. Abu-Reesh

Lanthanum-based perovskites (LaMnxCo1-xO3 (0 ≤ x ≤ 1)) were synthesized using a solution combustion synthesis technique with variable ratios of Co and Mn to investigate the surface property and electrocatalytic characteristics (stability and activity of catalyst) for methanol oxidation reaction (MOR), oxygen reduction reaction (ORR), and oxygen evolution reaction (OER) under alkaline medium (KOH). The structural, chemical, and morphological characterizations of the synthesized catalyst were performed by XRD, FTIR, SEM, TEM, and XPS techniques as a function of the Mn:Co elemental ratio. The time–temperature profile during the combustion process was also monitored to study the completion of the combustion reaction and to understand its impact on the structure of the perovskites. SEM/EDX and XPS analysis confirmed the formation of the targeted ratio of Mn and Co on the catalyst. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) results revealed that all perovskite samples with different Co:Mn ratios were active for ORR, OER, and MOR. The LaMnxCo1-xO3 perovskite with x = 0.4 showed the highest current density compared to the other samples toward all the electrocatalytic reactions under alkaline reaction conditions.

Graphical Abstract

Other Information

Published in: Electrocatalysis
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: http://dx.doi.org/10.1007/s12678-022-00772-0

History

Language

  • English

Publisher

Springer Science and Business Media LLC

Publication Year

  • 2022

Institution affiliated with

  • Qatar University

Usage metrics

    Manara - Qatar Research Repository

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC