Manara - Qatar Research Repository
Browse
DOCUMENT
10.3389_frai.2024.1391472.pdf (1.06 MB)
DOCUMENT
supp_Data_Sheet_1_Hate speech detection with ADHAR_ a multi-dialectal hate speech corpus in Arabic.pdf (191.77 kB)
1/0
2 files

Hate speech detection with ADHAR: a multi-dialectal hate speech corpus in Arabic

journal contribution
submitted on 2024-07-23, 09:58 and posted on 2024-07-23, 11:01 authored by Anis Charfi, Mabrouka Besghaier, Raghda Akasheh, Andria Atalla, Wajdi Zaghouani

Hate speech detection in Arabic poses a complex challenge due to the dialectal diversity across the Arab world. Most existing hate speech datasets for Arabic cover only one dialect or one hate speech category. They also lack balance across dialects, topics, and hate/non-hate classes. In this paper, we address this gap by presenting ADHAR—a comprehensive multi-dialect, multi-category hate speech corpus for Arabic. ADHAR contains 70,369 words and spans four language variants: Modern Standard Arabic (MSA), Egyptian, Levantine, Gulf and Maghrebi. It covers four key hate speech categories: nationality, religion, ethnicity, and race. A major contribution is that ADHAR is carefully curated to maintain balance across dialects, categories, and hate/non-hate classes to enable unbiased dataset evaluation. We describe the systematic data collection methodology, followed by a rigorous annotation process involving multiple annotators per dialect. Extensive qualitative and quantitative analyses demonstrate the quality and usefulness of ADHAR. Our experiments with various classical and deep learning models demonstrate that our dataset enables the development of robust hate speech classifiers for Arabic, achieving accuracy and F1-scores of up to 90% for hate speech detection and up to 92% for category detection. When trained with Arabert, we achieved an accuracy and F1-score of 94% for hate speech detection, as well as 95% for the category detection.

Other Information

Published in: Frontiers in Artificial Intelligence
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3389/frai.2024.1391472

Additional institutions affiliated with: Information Systems Department - CMU-Q

Funding

Qatar National Research Fund (NPRP13S-0206-200281), Resources and Applications for Detecting and Classifying Polarized and Hate Speech in Arabic Social Media.

History

Language

  • English
  • Arabic

Publisher

Frontiers

Publication Year

  • 2024

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Carnegie Mellon University in Qatar
  • Hamad Bin Khalifa University
  • College of Humanities and Social Sciences - HBKU