Manara - Qatar Research Repository
Browse

Groundwater Quality Evaluation of Fractured Aquifers Using Machine Learning Models and Hydrogeochemical Approaches to Sustainable Water-Irrigation Security in Arid Climate (Central Tunisia)

Download (8.4 MB)
journal contribution
submitted on 2024-08-20, 11:52 and posted on 2024-08-20, 11:53 authored by Mohamed Haythem Msaddek, Yahya Moumni, Lahcen Zouhri, Ismail Chenini, Adel Zghibi

The primary aims of this research paper involve the creation and verification of machine learning-based quality models that utilize Integrated Irrigation Water Quality Indices (IIGWQIs) through an integrated GIS approach. We utilize the Least-Squares Support Vector Machines (LS-SVM) and the Pearson Correlation Fuzzy Inference-based System (PC-FIS) to establish forecasts for groundwater quality in the Meknassy basin. This basin serves as a representative case of an irrigated region in a mining environment under arid climatic conditions in central Tunisia. The evaluated factors for groundwater quality encompass the Irrigation Water Quality Index (IWQIndex), Sodium Adsorption Ratio Index (SARIndex), Soluble Sodium Percentage Index (SSPIndex), Potential Salinity Index (PSIndex), Kelley Index (KIndex), and Residual Sodium Carbonate Index (RSCIndex). These factors were determined based on measurements from 53 groundwater wells, which included various physico-chemical parameters. The hydrogeochemical facies identified included Ca-Mg-SO4, mixed Ca-Mg-Cl-SO4, and Na-Cl facies, revealing processes such as carbonate weathering, carbonate dissolution, interactions between rocks and groundwater, and mixing ionic substitution. In terms of the irrigation suitability categories, the IWQIndex, SSPIndex, PSIndex, Kindex, and RSCIndex indicated no limitation or minimal limitation (77.36%), secure (92.45%), favorable to excellent (66.04%), favorable (81.13%), and average to secure (88.68%), respectively. However, only 15.09% were considered favorable, according to SARIndex. The evaluation of the predictive models revealed the effectiveness of both the PC-FIS model and the LS-SVM model in accurately forecasting the IIGWQIs.

Other Information

Published in: Water
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/w15193332

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Geographic coverage

Tunisia

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC