Future Prediction of COVID-19 Vaccine Trends Using a Voting Classifier
Machine learning (ML)-based prediction is considered an important technique for improving decision making during the planning process. Modern ML models are used for prediction, prioritization, and decision making. Multiple ML algorithms are used to improve decision-making at different aspects after forecasting. This study focuses on the future prediction of the effectiveness of the COVID-19 vaccine effectiveness which has been presented as a light in the dark. People bear several reservations, including concerns about the efficacy of the COVID-19 vaccine. Under these presumptions, the COVID-19 vaccine would either lower the risk of developing the malady after injection, or the vaccine would impose side effects, affecting their existing health condition. In this regard, people have publicly expressed their concerns regarding the vaccine. This study intends to estimate what perception the masses will establish about the role of the COVID-19 vaccine in the future. Specifically, this study exhibits people’s predilection toward the COVID-19 vaccine and its results based on the reviews. Five models, e.g., random forest (RF), a support vector machine (SVM), decision tree (DT), K-nearest neighbor (KNN), and an artificial neural network (ANN), were used for forecasting the overall predilection toward the COVID-19 vaccine. A voting classifier was used at the end of this study to determine the accuracy of all the classifiers. The results prove that the SVM produces the best forecasting results and that artificial neural networks (ANNs) produce the worst prediction toward the individual aptitude to be vaccinated by the COVID-19 vaccine. When using the voting classifier, the proposed system provided an overall accuracy of 89.9% for the random dataset and 45.7% for the date-wise dataset. Thus, the results show that the studied prediction technique is a promising and encouraging procedure for studying the future trends of the COVID-19 vaccine.
Other Information
Published in: Data
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/data6110112
Funding
Open Access funding provided by the Qatar National Library.
History
Language
- English
Publisher
MDPIPublication Year
- 2021
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Hamad Bin Khalifa University
- College of Science and Engineering - HBKU