Manara - Qatar Research Repository
Browse

Fourier Transform Infrared Imaging—A Novel Approach to Monitor Bio Molecular Changes in Subacute Mild Traumatic Brain Injury

Download (3.35 MB)
journal contribution
submitted on 2024-04-30, 06:02 and posted on 2024-04-30, 06:03 authored by Fazle Rakib, Khalid Al-Saad, Sebnem Garip Ustaoglu, Ehsan Ullah, Raghvendra Mall, Richard Thompson, Essam M. Abdelalim, Tariq Ahmed, Feride Severcan, Mohamed H. M. Ali

Traumatic brain injury (TBI) can be defined as a disorder in the function of the brain after a bump, blow, or jolt to the head, or penetrating head injury. Mild traumatic brain injury (mTBI) can cause devastating effects, such as the initiation of long-term neurodegeneration in brain tissue. In the current study, the effects of mTBI were investigated on rat brain regions; cortex (Co) and corpus callosum (CC) after 24 h (subacute trauma) by Fourier transform infrared (FTIR) imaging and immunohistochemistry (IHC). IHC studies showed the formation of amyloid-β (Aβ) plaques in the cortex brain region of mTBI rats. Moreover, staining of myelin basic protein presented the shearing of axons in CC region in the same group of animals. According to FTIR imaging results, total protein and lipid content significantly decreased in both Co and CC regions in mTBI group compared to the control. Due to this significant decrease in both lipid and protein content, remarkable consistency in lipid/protein band ratio in mTBI and control group, was observed. Significant decrease in methyl content and a significant increase in olefinic content were observed in Co and CC regions of mTBI rat brain tissues. Classification amongst distinguishable groups was performed using principal component analysis (PCA) and hierarchical clustering (HCA). This study established the prospective of FTIR imaging for assessing biochemical changes due to mTBI with high sensitivity, precision and high-resolution.

Other Information

Published in: Brain Sciences
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/brainsci11070918

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • College of Arts and Sciences - QU
  • Hamad Bin Khalifa University
  • Qatar Computing Research Institute - HBKU
  • Qatar Biomedical Research Institute - HBKU
  • Diabetes Research Center - QBRI

Usage metrics

    Qatar Computing Research Institute - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC