Manara - Qatar Research Repository
Browse
10.1109_access.2019.2914279.pdf (6.4 MB)

Exploiting Sparsity in Amplify-and-Forward Broadband Multiple Relay Selection

Download (6.4 MB)
journal contribution
submitted on 2024-03-11, 09:11 and posted on 2024-03-11, 09:11 authored by Ala Gouissem, Ridha Hamila, Naofal Al-dhahir, Sebti Foufou

Cooperative communication has attracted significant attention in the last decade due to its ability to increase the spatial diversity order with only single-antenna nodes. However, most of the techniques in the literature are not suitable for large cooperative networks such as device-to-device and wireless sensor networks that are composed of a massive number of active devices, which significantly increases the relay selection complexity. Therefore, to solve this problem and enhance the spatial and frequency diversity orders of large amplify and forward cooperative communication networks, in this paper, we develop three multiple relay selection and distributed beamforming techniques that exploit sparse signal recovery theory to process the subcarriers using the low complexity orthogonal matching pursuit algorithm (OMP). In particular, by separating all the subcarriers or some subcarrier groups from each other and by optimizing the selection and beamforming vector(s) using OMP algorithm, a higher level of frequency diversity can be achieved. This increased diversity order allows the proposed techniques to outperform existing techniques in terms of bit error rate at a lower computation complexity. A detailed performance-complexity tradeoff, as well as Monte Carlo simulations, are presented to quantify the performance and efficiency of the proposed techniques.

Other Information

Published in: IEEE Access
License: http://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1109/access.2019.2914279

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

IEEE

Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Qatar University

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC