Manara - Qatar Research Repository
Browse

Experimental validation of numerical model for thermomechanical performance of material extrusion additive manufacturing process: Effect of infill design & density

Download (7.6 MB)
journal contribution
submitted on 2023-11-02, 10:43 and posted on 2023-11-02, 11:20 authored by Ans Al Rashid, Muammer Koç

The optimum selection of process parameters, materials, and product design is essential to achieve the desired response of 3D-printed structures, especially in functional components. The current practices of the experimental optimization process require significant resources, which can be limited through numerical modeling and simulation techniques. In this study, a thermomechanical numerical model is used to predict the performance of the additive manufacturing (AM) process, i.e., fused filament fabrication (FFF). 3D printing (3DP) process simulations were performed for tensile testing coupons using carbon fiber-reinforced polyamide-6 (PA6-CF) material. The numerical model predicted the effect of infill patterns and densities on the deflections and distortions during the FFF process. The numerical model predictions were validated via experiments performed under similar conditions. The results conclude that the numerical model can adequately predict the process-induced deflections and distortions during the FFF process. Generally, higher dimensional control was observed for rectangular infill patterns and increased infill density. However, the numerical model overestimates the shrinkage as the stress-relaxation effect is not considered in the numerical model and underestimates the warpages as perfect build plate adhesion is assumed.

Other Information

Published in: Results in Engineering
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.rineng.2022.100860

Funding

Open Access funding provided by the Qatar National Library

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC