Manara - Qatar Research Repository
Browse
1-s2.0-S2238785421015398-main.pdf (2.56 MB)

Experimental and modeling analysis of p-type Bi0.4Sb1.6Te3 and graphene nanocomposites

Download (2.56 MB)
journal contribution
submitted on 2023-10-16, 05:23 and posted on 2023-10-16, 11:10 authored by Aicha S. Lemine, Farah M. El-Makaty, Hana A. Al-Ghanim, Khaled M. Youssef

The state-of-the-art Bismuth-Telluride (Bi2Te3) based systems are promising thermoelectric materials for efficient thermoelectric applications. In this study, the effect of graphene nanosheets (GNS) integrity on thermoelectric properties of a p-type Bi0.4Sb1.6Te3 alloy has been studied using high-energy ball milling and SPS sintering techniques. The synthesized pristine Bi0.4Sb1.6Te3 and 0.05wt% GNS/Bi0.4Sb1.6Te3 nanocomposites at different addition times of GNS have exhibited a single-phase and artifact-free bulk nanocrystalline Bi0.4Sb1.6Te3 with nanocrystals size of 17 nm. The TEM analysis confirmed the mechanical exfoliation of graphene filler in 5m nanocomposite into a single-layered nanostructure with an interplanar spacing of 0.343 nm. The prominent Raman features of the monolayered graphene sheet have appeared in the synthesized 5m-GNS/Bi0.4Sb1.6Te3 nanocomposite. This highlighted the crucial rule of graphene addition time on its structure and morphology of the synthesized nanocomposites. The ZT profile of 5m nanocomposite reached 0.801 at 348 K till 398 K. This resulted in 65% of improvements to the pristine Bi0.4Sb1.6Te3 pellet at 323 K. The obtained results were used to simulate a thermoelectric (TE) device module using ANSYS Workbench. The GNS nanocomposites have shown an ultrahigh output power of 95.57 W compared to 89.96 W for the pristine module at ΔT of 150 °C. The GNS addition has increased the output power of pristine Bi0.4Sb1.6Te3 by 7%, leading to comparable TE performance to other simulated Bi2Te3 systems.

Other Information

Published in: Journal of Materials Research and Technology
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.jmrt.2021.12.096

Funding

Open Access funding provided by the Qatar National Library

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Qatar University
  • College of Arts and Sciences - QU
  • College of Engineering - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC