Manara - Qatar Research Repository
Browse

Exceeding 3 ms Minority Carrier Lifetime in n–type Non-contact Crucible Silicon

Download (413.83 kB)
journal contribution
submitted on 2024-09-25, 10:57 and posted on 2024-09-25, 10:58 authored by Sergio Castellanos, Maulid Kivambe, Mallory A. Jensen, Douglas M. Powell, Kazuo Nakajima, Kohei Morishita, Ryota Murai, Tonio Buonassisi

The presence of metal impurities and their interactions with structural defects (e.g., dislocations) are deleterious to the performance of Si-based solar cell devices. To achieve higher minority carrier lifetimes that translate into higher solar cell efficiencies, novel growth methods with low dislocation densities and reduced metal impurity concentrations have recently been developed. These methods simultaneously aim to achieve low capital expense (capex), necessary to ensure rapid industry scaling. Monocrystalline Si grown by the non-contact crucible method (NOC-Si) has the potential to achieve high bulk minority carrier lifetimes and high efficiencies at low cost given its low structural defect density. Growth in large-diameter crucibles ensures high throughput consistent with low capex. However, high temperatures, coupled with conditions during Si growth (e.g., crucible and ambient gas) can lead to the in-diffusion of impurities, compromising the potential to achieve high efficiency solar cell devices. Herein, we report high minority-carrier lifetimes exceeding 3 milliseconds (ms) in n-type NOC-Si material, achieved through a strict impurity-control procedure at the growth stage that prevents in-diffusion of impurities to the melt, coupled with a tailored defect-engineering process via optimized phosphorus gettering.

Other Information

Published in: Energy Procedia
License: http://creativecommons.org/licenses/by-nc-nd/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.egypro.2016.07.068

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2016

License statement

This Item is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Environment and Energy Research Institute - HBKU

Usage metrics

    Qatar Environment and Energy Research Institute - HBKU

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC