Manara - Qatar Research Repository
Browse
10.3389_fpubh.2022.834032.pdf (1.64 MB)

Evaluation of Neuro Images for the Diagnosis of Alzheimer's Disease Using Deep Learning Neural Network

Download (1.64 MB)
journal contribution
submitted on 2024-04-22, 06:11 and posted on 2024-04-22, 06:11 authored by Ahila A, Poongodi M, Mounir Hamdi, Sami Bourouis, Kulhanek Rastislav, Faizaan Mohmed

Alzheimer's Disease (AD) is a progressive, neurodegenerative brain disease and is an incurable ailment. No drug exists for AD, but its progression can be delayed if the disorder is identified at its initial stage. Therefore, an early analysis of AD is of fundamental importance for patient care and efficient treatment. Neuroimaging techniques aim to assist the physician in the diagnosis of brain disorders by using images. Positron emission tomography (PET) is a kind of neuroimaging technique employed to create 3D images of the brain. Due to many PET images, researchers attempted to develop computer-aided diagnosis (CAD) to differentiate normal control from AD. Most of the earlier methods used image processing techniques for preprocessing and attributes extraction and then developed a model or classifier to classify the brain images. As a result, the retrieved features had a significant impact on the recognition rate of previous techniques. A novel and enhanced CAD system based on a convolutional neural network (CNN) is formulated to address this issue, capable of discriminating normal control from Alzheimer's disease patients. The proposed approach is evaluated using the 18FDG-PET images of 855 patients, including 635 normal control and 220 Alzheimer's disease patients from the ADNI database. The result showed that the proposed CAD system yields an accuracy of 96%, a sensitivity of 96%, and a specificity of 94%, leading to splendid performance when related to the methods already in use that are specified in the literature.

Other Information

Published in: Frontiers in Public Health
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3389/fpubh.2022.834032

History

Language

  • English

Publisher

Frontiers

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC