Engineering the structural, optical and photoelectrochemical properties of BaTiO3-CoFe2O4 nanocomposite for photoelectrochemical water splitting
Water splitting in the presence of semiconductor photocatalyst under sunlight illumination is one of the potential methods to produce clean hydrogen fuel. Herein, a BaTiO3-CoFe2O4 composite photocatalyst was fabricated using facile hydrothermal method and evaluated their structural, optical, morphological and electrochemical properties for their plausible application in photoelectrochemical water-splitting. The cubic phase of CoFe2O4 and tetragonal phase of BaTiO3 were proved by X-ray diffraction pattern. The SEM and TEM images of the composite BaTiO3-CoFe2O4 had shown the combination of both spherical and needle-like structure. The average diameter of pure BaTiO3 and CoFe2O4 was around 25 and 50 nm respectively, however, the particle size was reduced to 43 nm for BaTiO3-CoFe2O4 composite. The UV-vis band gap analysis revealed that the Eg value of the composite was found in the visible spectrum. The photoelectochemical behavior with 12 mA/cm2 at 1.7 V applied potential was achieved for the BaTiO3-CoFe2O4 hybrid nanocomposite. The electrochemical impedance spectroscopy showed that the prepared BaTiO3-CoFe2O4 composite have possessed better charge transfer and recombination kinetics.
Other Information
Published in: Electrochimica Acta
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: http://dx.doi.org/10.1016/j.electacta.2023.142849
Funding
Open Access funding provided by the Qatar National Library
History
Language
- English
Publisher
ElsevierPublication Year
- 2023
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International LicenseInstitution affiliated with
- Qatar University
- Qatar University Young Scientists Center - QU