Manara - Qatar Research Repository
10.1007_s41101-023-00232-w.pdf (4.47 MB)

Electrospun Polysulfone Hybrid Nanocomposite Fibers as Membrane for Separating Oil/Water Emulsion

Download (4.47 MB)
journal contribution
submitted on 2024-01-16, 08:11 and posted on 2024-01-17, 06:06 authored by Deepalekshmi Ponnamma, Yara Elgawady, Mohamed K. Hassan, Samer Adham, Mashael Al-Maas, Karim Alamgir, Mariam Al Ali Al-Maadeed

Commercial polymer membranes are largely utilized to separate oil/water mixtures; however, membrane fouling, flux decline, and short lifetime often inhibit their high performance. In order to resolve these drawbacks of the commercial membranes, we introduce a surface modification strategy following the electrospinning method. Electrospun fibers of polysulfone (PSf)/iron oxide (FeO)/halloysite nanotubes (HNT) nanocomposite are applied to modify the polyether sulfone (PES) standard membrane support surface for developing highly efficient oil/water emulsion separating membranes. This facile and simple spinning process for shorter periods ensures nanocomposite coatings on the standard PES membranes and allows a better oil/water separation. We analyze the structural and morphological characteristics of the modified membrane surface using scanning electron microscopy, Fourier transformation infrared spectroscopy, and X-ray diffraction studies and hydrophilicity from contact angle studies. FeO nanoparticles of 2–5 nm and HNTs of < 50 nm size mixed in PSf produce fibers of 531 ± 162 nm average diameter at a relatively lower applied electrical voltage of 14.5 kV, compared to PSf. Underwater and under-oil contact angle values are used to prove the surface characteristics of the membranes and total organic content (TOC) values for the emulsion separation performance. From PES support to PSf and PSf/HNT-FeO, the TOC values respectively change from 67 to 75 and 79%. We find moderately hydrophilic membranes (PSf/HNT-FeO) resulting in a higher permeate flux (28,447 Lm−2·h−1) and quicker separation performance. We believe this study provides a notable solution to modify the surface of commercial membranes for better emulsion separation performance.

Other Information

Published in: Water Conservation Science and Engineering
See article on publisher's website:


Open Access funding provided by the Qatar National Library.



  • English


Springer Nature

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • College of Arts and Sciences - QU
  • Center for Advanced Materials - QU
  • Qatar Science & Technology Park
  • ConocoPhillips Water Technology Ltd QSTP-B

Usage metrics

    Qatar University



    Ref. manager