Manara - Qatar Research Repository
Browse

Electrochemical surface activation of commercial tungsten carbide for enhanced electrocatalytic hydrogen evolution and methanol oxidation reactions

journal contribution
submitted on 2023-12-05, 06:20 and posted on 2023-12-05, 11:30 authored by Ammar Bin Yousaf, Filip Kveton, Anna Blsakova, Anton Popelka, Jan Tkac, Peter Kasak

The chemistry of electrocatalysts deals with multiple critical factors to facilitate the electrochemical reactions. Among those, the rate limiting depends on electrons transfer for chemisorptions of molecules in redox reactions. This feature can be directly linked with efficient catalyst support material in electrocatalysis. To this end, we have developed a novel, simple and facile route to introduce commercially available material with tuned surface and interface chemistry for their potential applications in fuel cells (FCs) science and technology. Commercial tungsten carbide (WC) was activated by means of electrochemical oxygen reduction reactions (ORR) on different rotation rates to induce mild interactions of oxygen molecules with surface of WC at specified reduction potentials. The X-ray diffraction and X-ray photoelectron spectroscopy analysis before and after the activation confirmed the tuning of WC surface with incorporation of potential factors to activate them for enhanced electrocatalytic activities. In addition, the electrocatalytic methanol oxidation reactions (MOR) and hydrogen evolution reactions (HER) were carried and confirmed the exceptional boosted-up electrocatalytic behaviour of WC after the activation. The enhancement in electrocatalytic mechanism after activation was also tested and proved by means of in-situ FTIR spectroelectrochemical analysis for methanol electro-oxidation. In addition, the electrochemical depositions of Pt nanoparticles were carried out on WC surface before and after the activation to reveal the influence of surface activation for accommodating the foreign particles as support material in electrocatalysis. The results shown two fold enhancement in anodic performance of Pt-modified activated WC catalyst for methanol oxidation reactions and hydrogen evolution reactions in fuel cells.

Other Information

Published in: Journal of Electroanalytical Chemistry
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.jelechem.2022.116525

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • Center for Advanced Materials - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC