Manara - Qatar Research Repository
Browse

Effects of underlying topology on quantum state discrimination

Download (898.2 kB)
journal contribution
submitted on 2024-08-04, 05:54 and posted on 2024-08-04, 05:55 authored by Aatif Kaisar Khan, Yasir Hassan Dar, Elias C. Vagenas, Salman Sajad Wani, Saif Al-Kuwari, Mir Faizal

In this work, we show that quantum state discrimination can be modified due to a change in the underlying topology of a system. In particular, we explicitly demonstrate that the quantum state discrimination of systems with underlying discrete topology differs from that of systems with underlying continuous topology. Such changes in the topology of a spacetime can occur in certain quantum gravity approaches. In fact, all approaches to quantum gravity can be classified into two types: those with underlying continuous topology (such as string theory) and those with an underlying discrete topology (such as loop quantum gravity). We demonstrate that the topology of these two types of quantum gravity approaches has different effects on the quantum state discrimination of low-energy quantum systems. We also show that any modification of quantum mechanics, which does not change the underlying topology, does not modify quantum state discrimination.

Other Information

Published in: The European Physical Journal C
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1140/epjc/s10052-024-12598-9

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2024

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC