Manara - Qatar Research Repository
Browse

Effective dispatch strategies assortment according to the effect of the operation for an islanded hybrid microgrid

journal contribution
submitted on 2025-05-12, 08:09 and posted on 2025-05-12, 08:10 authored by Sk.A. Shezan, Md. Fatin Ishraque, S.M. Muyeen, S.M. Arifuzzaman, Liton Chandra Paul, Sajal K. Das, Subrata K. Sarker

The optimized design of a freestanding hybrid microgrid for various distinct dispatch controls is assessed in this paper, which considers the optimal sizes of individual components, system response, and reliability analysis. The effective design and management of stand-alone islanded hybrid smartgrids are getting increasingly importance and influences as the prevalence of renewable energy in microgrids grows. Melville Island, off the coast of eastern Queensland, Australia, is taken as the test microgrid in this study. For the optimal sizing and techno-economic assessment of the intended hybrid microgrid system consist of of solar diesel generator, PV , battery storage, and wind turbine, four dispatch approaches have been unitized: load following, generator order, combined dispatch, and cycle charging strategy. The proposed off-grid microgrid's CO2 emissions, total net present cost (NPC), and the Levelized cost of energy (LCOE) have all been optimized. In HOMER software, all the possible dispatch algorithms were analyzed, and the power system responses and reliability study were carried out using DIgSILENT PowerFactory. The findings of the study are useful for determining the optimum hybrid combination and available resources for the best performance of an off-grid microgrid employing various dispatch mechanisms. Following the simulation data, load-following is the best dispatch mechanism for stand-alone microgrid architecture since it has the lowest LCOE and NPC.

Other Information

Published in: Energy Conversion and Management: X
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.ecmx.2022.100192

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • College of Engineering - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC