Manara - Qatar Research Repository
Browse

Effect of preparation method on the properties of poly(methyl methacrylate)/mesoporous silica composites

Download (951.26 kB)
journal contribution
posted on 2022-11-22, 21:16 authored by M. A. Sibeko, M. L. Saladino, F. Armetta, A. Spinella, A. S. Luyt

The preparation method of a polymer composite and the filler loading are amongst the factors that influence the properties of the final composites. This article studies the effect of these factors on the thermal stability and thermal degradation kinetics of poly(methyl methacrylate) (PMMA)/mesoporous silica (MCM-41) composites filled with small amounts of MCM-41. The PMMA/MCM-41 composites were prepared through in situ polymerisation and melt mixing methods, with MCM-41 loadings of 0.1, 0.3, and 0.5 wt.%. The presence of MCM-41 increased the thermal stability of PMMA/MCM-41 composites prepared by melt mixing, but in the case of the in situ polymerised samples, the MCM-41 accelerated the degradation of the polymer. As a result, the activation energy was low and less energy was required to initiate and propagate the degradation process of these composites. The small-angle X-ray scattering (SAXS) measurements showed that the preparation method of the composites had no influence on the pore size of MCM-41, but the PMMAs used in the two methods both had shorter chains than the MCM-41 pore size. This allowed the polymer chains to be trapped inside the pores of the filler and be immobilised, as was observed from nuclear magnetic resonance (NMR) spectroscopy. The immobilisation of the polymer chains was more significant in the in situ polymerised samples.

Other Information

Published in: Emergent Materials
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: http://dx.doi.org/10.1007/s42247-019-00057-1

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • Center for Advanced Materials - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC