Manara - Qatar Research Repository
Browse

Effect of Surface Treatment of Halloysite Nanotubes (HNTs) on the Kinetics of Epoxy Resin Cure with Amines

Download (5.4 MB)
journal contribution
submitted on 2024-06-06, 05:48 and posted on 2024-06-06, 05:48 authored by Vahideh Akbari, Maryam Jouyandeh, Seyed Mohammad Reza Paran, Mohammad Reza Ganjali, Hossein Abdollahi, Henri Vahabi, Zahed Ahmadi, Krzysztof Formela, Amin Esmaeili, Ahmad Mohaddespour, Sajjad Habibzadeh, Mohammad Reza Saeb

The epoxy/clay nanocomposites have been extensively considered over years because of their low cost and excellent performance. Halloysite nanotubes (HNTs) are unique 1D natural nanofillers with a hollow tubular shape and high aspect ratio. To tackle poor dispersion of the pristine halloysite (P-HNT) in the epoxy matrix, alkali surface-treated HNT (A-HNT) and epoxy silane functionalized HNT (F-HNT) were developed and cured with epoxy resin. Nonisothermal differential scanning calorimetry (DSC) analyses were performed on epoxy nanocomposites containing 0.1 wt.% of P-HNT, A-HNT, and F-HNT. Quantitative analysis of the cure kinetics of epoxy/amine system made by isoconversional Kissinger–Akahira–Sunose (KAS) and Friedman methods made possible calculation of the activation energy (Eα) as a function of conversion (α). The activation energy gradually increased by increasing α due to the diffusion-control mechanism. However, the average value of Eα for nanocomposites was lower comparably, suggesting autocatalytic curing mechanism. Detailed assessment revealed that autocatalytic reaction degree, m increased at low heating rate from 0.107 for neat epoxy/amine system to 0.908 and 0.24 for epoxy/P-HNT and epoxy/A-HNT nanocomposites, respectively, whereas epoxy/F-HNT system had m value of 0.072 as a signature of dominance of non-catalytic reactions. At high heating rates, a similar behavior but not that significant was observed due to the accelerated gelation in the system. In fact, by the introduction of nanotubes the mobility of curing moieties decreased resulting in some deviation of experimental cure rate values from the predicted values obtained using KAS and Friedman methods.


Other Information

Published in: Polymers
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/polym12040930


The University of Doha for Science and Technology replaced the now-former College of the North Atlantic-Qatar after an Amiri decision in 2022. UDST has become and first national applied University in Qatar; it is also second national University in the country.

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2020

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • College of the North Atlantic - Qatar (-2022)
  • School of Engineering Technology and Industrial Trades - CNA-Q (-2022)
  • University of Doha for Science and Technology
  • College of Engineering and Technology - UDST

Usage metrics

    College of Engineering and Technology - UDST

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC