Manara - Qatar Research Repository
Browse
DOCUMENT
nanomaterials-09-00769-v2.pdf (3.6 MB)
DOCUMENT
supp_nanomaterials-09-00769-s001.pdf (2.07 MB)
1/0
2 files

Effect of Graphene Oxide Synthesis Method on Properties and Performance of Polysulfone-Graphene Oxide Mixed Matrix Membranes

journal contribution
submitted on 2024-03-10, 07:16 and posted on 2024-03-10, 07:16 authored by Safae Sali, Hamish R. Mackey, Ahmed A. Abdala

Graphene oxide (GO) has shown great promise as a nanofiller to enhance the performance of mixed matrix composite membranes (MMMs) for water treatment applications. However, GO can be prepared by various synthesis routes, leading to different concentrations of the attached oxygen functional groups. In this research, GO produced by the Hummers’, Tour, and Staudenmaier methods were characterized and embedded at various fractions into the matrix of polysulfone (PSf) and used to prepare microfiltration membranes via the phase inversion process. The effects of the GO preparation method and loading on the membrane characteristics, as well as performance for oil removal from an oil-water emulsion, are analyzed. Our results reveal that GO prepared by the Staudenmaier method has a higher concentration of the more polar carbonyl group, increasing the membrane hydrophilicity and porosity compared to GO prepared by the Hummers’ and Tour methods. On the other hand, the Hummers’ and Tour methods produce GO with larger sheet size, and are more effective in enhancing the mechanical properties of the PSf membrane. Finally, all MMMs exhibited improved water flux (up to 2.7 times) and oil rejection, than those for the control PSf sample, with the optimum GO loading ranged between 0.1–0.2 wt%.

Other Information

Published in: Nanomaterials
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/nano9050769

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU
  • Texas A&M University at Qatar

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC