Manara - Qatar Research Repository
Browse

Edge-maximal θ2k+1-free non-bipartite Hamiltonian graphs of odd order

Download (990.95 kB)
journal contribution
submitted on 2025-06-30, 06:03 and posted on 2025-06-30, 06:04 authored by M. M. M. Jaradat, A. Baniabedalruhman, M. S. Bataineh, A. M. M. Jaradat, A. A. Al-Rhayyel

Let 𝒢⁡(𝑛;𝜃2𝑘+1) denote the class of non-bipartite graphs on n vertices containing no 𝜃2𝑘+1-graph and 𝑓⁡(𝑛;𝜃2𝑘+1)=max⁡{ℰ⁡(𝐺):𝐺∈𝒢⁡(𝑛;𝜃2𝑘+1)}. Let ℋ⁡(𝑛;𝜃2𝑘+1) denote the class of non-bipartite Hamiltonian graphs on n vertices containing no 𝜃2𝑘+1-graph and ℎ⁡(𝑛;𝜃2𝑘+1)=max⁡{ℰ⁡(𝐺):𝐺∈ℋ⁡(𝑛;𝜃2𝑘+1)}. In this paper we determine ℎ⁡(𝑛;𝜃2𝑘+1) by proving that for sufficiently large odd n, ℎ⁡(𝑛;𝜃2𝑘+1)≤⌊(𝑛−2⁢𝑘+3)24⌋+2⁢𝑘−3. Furthermore, the bound is best possible. Our results confirm the conjecture made by Bataineh in 2007.

Other Information

Published in: AKCE International Journal of Graphs and Combinatorics
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1080/09728600.2022.2145922

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Taylor & Francis

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • College of Arts and Sciences - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC