submitted on 2025-06-30, 06:03 and posted on 2025-06-30, 06:04authored byM. M. M. Jaradat, A. Baniabedalruhman, M. S. Bataineh, A. M. M. Jaradat, A. A. Al-Rhayyel
Let 𝒢(𝑛;𝜃2𝑘+1) denote the class of non-bipartite graphs on n vertices containing no 𝜃2𝑘+1-graph and 𝑓(𝑛;𝜃2𝑘+1)=max{ℰ(𝐺):𝐺∈𝒢(𝑛;𝜃2𝑘+1)}. Let ℋ(𝑛;𝜃2𝑘+1) denote the class of non-bipartite Hamiltonian graphs on n vertices containing no 𝜃2𝑘+1-graph and ℎ(𝑛;𝜃2𝑘+1)=max{ℰ(𝐺):𝐺∈ℋ(𝑛;𝜃2𝑘+1)}. In this paper we determine ℎ(𝑛;𝜃2𝑘+1) by proving that for sufficiently large odd n, ℎ(𝑛;𝜃2𝑘+1)≤⌊(𝑛−2𝑘+3)24⌋+2𝑘−3. Furthermore, the bound is best possible. Our results confirm the conjecture made by Bataineh in 2007.