Manara - Qatar Research Repository
Browse
1/1
2 files

Dysregulated Metabolic Pathways in Subjects with Obesity and Metabolic Syndrome

journal contribution
submitted on 2024-04-22, 08:14 and posted on 2024-04-22, 08:15 authored by Fayaz Ahmad Mir, Ehsan Ullah, Raghvendra Mall, Ahmad Iskandarani, Tareq A. Samra, Farhan Cyprian, Aijaz Parray, Meis Alkasem, Ibrahem Abdalhakam, Faisal Farooq, Abdul-Badi Abou-Samra

Background: Obesity coexists with variable features of metabolic syndrome, which is associated with dysregulated metabolic pathways. We assessed potential associations between serum metabolites and features of metabolic syndrome in Arabic subjects with obesity. Methods: We analyzed a dataset of 39 subjects with obesity only (OBO, n = 18) age-matched to subjects with obesity and metabolic syndrome (OBM, n = 21). We measured 1069 serum metabolites and correlated them to clinical features. Results: A total of 83 metabolites, mostly lipids, were significantly different (p < 0.05) between the two groups. Among lipids, 22 sphingomyelins were decreased in OBM compared to OBO. Among non-lipids, quinolinate, kynurenine, and tryptophan were also decreased in OBM compared to OBO. Sphingomyelin is negatively correlated with glucose, HbA1C, insulin, and triglycerides but positively correlated with HDL, LDL, and cholesterol. Differentially enriched pathways include lysine degradation, amino sugar and nucleotide sugar metabolism, arginine and proline metabolism, fructose and mannose metabolism, and galactose metabolism. Conclusions: Metabolites and pathways associated with chronic inflammation are differentially expressed in subjects with obesity and metabolic syndrome compared to subjects with obesity but without the clinical features of metabolic syndrome.

Other Information

Published in: International Journal of Molecular Sciences
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/ijms23179821

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Medical Corporation
  • Qatar Metabolic Institute - HMC
  • Neuroscience Institute - HMC
  • Hamad Bin Khalifa University
  • Qatar Computing Research Institute - HBKU
  • Qatar University
  • Qatar University Health - QU
  • College of Medicine - QU HEALTH

Usage metrics

    Qatar Computing Research Institute - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC