Manara - Qatar Research Repository
Browse
1-s2.0-S2352710220311797-main.pdf (7.82 MB)

Durability characteristics of high and ultra-high performance concretes

Download (7.82 MB)
journal contribution
submitted on 2023-09-05, 11:39 and posted on 2023-09-18, 10:55 authored by Muazzam Ghous Sohail, Ramazan Kahraman, Nasser Al Nuaimi, Bora Gencturk, Wael Alnahhal

Durability characteristics of high-performance concrete (HPC) and ultra-high performance concrete (UHPC) are evaluated in comparison to normal strength concrete (NSC). HPC and UHPC are cast using commonly available materials with no special heat treatment. Concrete resistivity, rapid chloride permeability, sorptivity, porosity, and resistance to chloride migration and carbonation of these three types of concrete are assessed. Microstructure and hydration products are investigated using scanning electron microscope (SEM) imaging and X-ray diffraction (XRD) analyses, respectively. Potential enhancement in the service life of reinforced concrete (RC) structures when concrete is replaced with HPC and UHPC is predicted using the time-to-corrosion model. Dense microstructures, high electrical resistance, negligible chloride permeability, low sorptivity, no carbonation ingress are observed in HPC and UHPC. The chloride diffusion coefficient was found to be at least three orders of magnitude lower in UHPC compared to NSC, which could delay the corrosion initiation of steel reinforcement. With such positive attributes, these concretes are expected to find more widespread application in concrete structures in harsh-climatic conditions. This paper provides additional data and analysis that could accelerate the adoption of these materials in practice.

Other Information

Published in: Journal of Building Engineering
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.jobe.2020.101669

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Qatar University
  • Center for Advanced Materials - QU
  • College of Engineering - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC