submitted on 2024-08-26, 09:13 and posted on 2024-08-26, 09:14authored bySatra Nim, Darren M. O’Hara, Carles Corbi-Verge, Albert Perez-Riba, Kazuko Fujisawa, Minesh Kapadia, Hien Chau, Federica Albanese, Grishma Pawar, Mitchell L. De Snoo, Sophie G. Ngana, Jisun Kim, Omar M. A. El-Agnaf, Enrico Rennella, Lewis E. Kay, Suneil K. Kalia, Lorraine V. Kalia, Philip M. Kim
<p dir="ltr">Accumulation of α-synuclein into toxic oligomers or fibrils is implicated in dopaminergic neurodegeneration in Parkinson’s disease. Here we performed a high-throughput, proteome-wide peptide screen to identify protein-protein interaction inhibitors that reduce α-synuclein oligomer levels and their associated cytotoxicity. We find that the most potent peptide inhibitor disrupts the direct interaction between the C-terminal region of α-synuclein and CHarged Multivesicular body Protein 2B (CHMP2B), a component of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III). We show that α-synuclein impedes endolysosomal activity via this interaction, thereby inhibiting its own degradation. Conversely, the peptide inhibitor restores endolysosomal function and thereby decreases α-synuclein levels in multiple models, including female and male human cells harboring disease-causing α-synuclein mutations. Furthermore, the peptide inhibitor protects dopaminergic neurons from α-synuclein-mediated degeneration in hermaphroditic C. elegans and preclinical Parkinson’s disease models using female rats. Thus, the α-synuclein-CHMP2B interaction is a potential therapeutic target for neurodegenerative disorders.</p><h2>Other Information</h2><p dir="ltr">Published in: Nature Communications<br>License: <a href="https://creativecommons.org/licenses/by/4.0" target="_blank">https://creativecommons.org/licenses/by/4.0</a><br>See article on publisher's website: <a href="https://dx.doi.org/10.1038/s41467-023-37464-2" target="_blank">https://dx.doi.org/10.1038/s41467-023-37464-2</a></p>