Manara - Qatar Research Repository
Browse
10.1109_access.2023.3238664.pdf (2.32 MB)

Detection of Real-Time Malicious Intrusions and Attacks in IoT Empowered Cybersecurity Infrastructures

Download (2.32 MB)
journal contribution
submitted on 2023-12-20, 08:01 and posted on 2024-01-09, 08:32 authored by Irfan Ali Kandhro, Sultan M. Alanazi, Fayyaz Ali, Asadullah Kehar, Kanwal Fatima, Mueen Uddin, Shankar Karuppayah

Computer viruses, malicious, and other hostile attacks can affect a computer network. Intrusion detection is a key component of network security as an active defence technology. Traditional intrusion detection systems struggle with issues like poor accuracy, ineffective detection, a high percentage of false positives, and an inability to handle new types of intrusions. To address these issues, we propose a deep learning-based novel method to detect cybersecurity vulnerabilities and breaches in cyber-physical systems. The proposed framework contrasts the unsupervised and deep learning-based discriminative approaches. This paper presents a generative adversarial network to detect cyber threats in IoT-driven IICs networks. The results demonstrate a performance increase of approximately 95% to 97% in terms of accuracy, reliability, and efficiency in detecting all types of attacks with a dropout value of 0.2 and an epoch value of 25. The output of well-known state-of-the-art DL classifiers achieved the highest true rate (TNR) and highest detection rate (HDR) when detecting the following attacks: (BruteForceXXS, BruteForceWEB, DoS_Hulk_Attack, and DOS_LOIC_HTTP_Attack) on the NSL-KDD, KDDCup99, and UNSW-NB15 datasets. It also maintained the confidentiality and integrity of users’ and systems’ sensitive information during the training and testing phases.

Other Information

Published in: IEEE Access
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1109/access.2023.3238664

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

IEEE

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • University of Doha for Science and Technology
  • College of Computing and Information Technology - UDST