Manara - Qatar Research Repository
10.1109_access.2023.3236812.pdf (2.72 MB)

Detecting COVID-19 From Lung Computed Tomography Images: A Swarm Optimized Artificial Neural Network Approach

Download (2.72 MB)
journal contribution
submitted on 2024-02-12, 07:01 and posted on 2024-02-12, 07:02 authored by S. Punitha, Thompson Stephan, Ramani Kannan, Mufti Mahmud, M. Shamim Kaiser, Samir Brahim Belhaouari

COVID-19 has affected many people across the globe. Though vaccines are available now, early detection of the disease plays a vital role in the better management of COVID-19 patients. An Artificial Neural Network (ANN) powered Computer Aided Diagnosis (CAD) system can automate the detection pipeline accounting for accurate diagnosis, overcoming the limitations of manual methods. This work proposes a CAD system for COVID-19 that detects and classifies abnormalities in lung CT images using Artificial Bee Colony (ABC) optimised ANN (ABCNN). The proposed ABCNN approach works by segmenting the suspicious regions from the CT images of non-COVID and COVID patients using an ABC optimised region growing process and extracting the texture and intensity features from those suspicious regions. Further, an optimised ANN model whose input features, initial weights and hidden nodes are optimised using ABC optimisation classifies those abnormal regions into COVID and non-COVID classes. The proposed ABCNN approach is evaluated using the lung CT images collected from the public datasets. In comparison to other available techniques, the proposed ABCNN approach achieved a high classification accuracy of 92.37% when evaluated using a set of 470 lung CT images.

Other Information

Published in: IEEE Access
See article on publisher's website:


Open Access funding provided by the Qatar National Library.



  • English



Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU