Manara - Qatar Research Repository
Browse

Designing super-fast trimodal sponges using recycled polypropylene for organics cleanup

Download (3.03 MB)
journal contribution
submitted on 2024-08-14, 06:23 and posted on 2024-08-14, 06:24 authored by Junaid Saleem, Zubair Khalid Baig Moghal, Gordon McKay

Sorbent pads and films have been commonly used for environmental remediation purposes, but designing their internal structure to optimize access to the entire volume while ensuring cost-effectiveness, ease of fabrication, sufficient strength, and reusability remains challenging. Herein, we report a trimodal sorbent film from recycled polypropylene (PP) with micropores, macro-voids, and sponge-like 3D cavities, developed through selective dissolution, thermally induced phase separation, and annealing. The sorbent has hundreds of cavities per cm2 that are capable of swelling up to twenty-five times its thickness, allowing for super-fast saturation kinetics (within 30 s) and maximum oil sorption (97 g/g). The sorption mechanism follows a pseudo-second-order kinetic model. Moreover, the sorbent is easily compressible, and its structure is retained during oil sorption, desorption, and resorption, resulting in 96.5% reuse efficiency. The oil recovery process involves manually squeezing the film, making the cleanup process efficient with no chemical treatment required. The sorbent film possesses high porosity for effective sorption with sufficient tensile strength for practical applications. Our integrated technique results in a strengthened porous polymeric structure that can be tailored according to end-use applications. This study provides a sustainable solution for waste management that offers versatility in its functionality.

Other Information

Published in: Scientific Reports
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1038/s41598-023-41506-6

Funding

Open Access funding provided by the Qatar National Library.

Qatar National Research Fund (NPRP12S-0325-190443), From Waste to Wealth: Eco-Friendly production of super-sorbents from plastic waste.

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU
  • Qatar University
  • Center for Advanced Materials - QU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC