Design of a 3D printed, motorized, uniaxial cell stretcher for microscopic and biochemical analysis of mechanotransduction
Cells respond to mechanical cues from their environment through a process of mechanosensing and mechanotransduction. Cell stretching devices are important tools to study the molecular pathways responsible for cellular responses to mechanobiological processes. We describe the development and testing of a uniaxial cell stretcher that has applications for microscopic as well as biochemical analyses. By combining simple fabrication techniques with adjustable control parameters, the stretcher is designed to fit a variety of experimental needs. The stretcher can be used for static and cyclic stretching. As a proof of principle, we visualize stretch induced deformation of cell nuclei via incremental static stretch, and changes in IEX1 expression via cyclic stretching. This stretcher is easily modified to meet experimental needs, inexpensive to build, and should be readily accessible for most laboratories with access to 3D printing.
Other Information
Published in: Biology Open
License: http://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1242/bio.057778
History
Language
- English
Publisher
The Company of BiologistsPublication Year
- 2021
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Hamad Bin Khalifa University
- College of Health and Life Sciences - HBKU