Design and development of a new metamaterial sensor-based Minkowski fractal antenna for medical imaging
The metamaterial sensor antenna is numerically designed to detect breast cancer using breast cancer cell lines, especially relying on the electrical characteristics of breast cancer cells, and designed antenna is measured and the results are observed. The metamaterial sensor antenna is a simple and efficient antenna which is designed using the Minkowski fractal curve with a ring-shaped Split Ring Resonator (SRR). The SRR is chosen because of its inductive and capacitive resonating properties. In addition, the Minkowski fractal curve is used as a defective ground structure to improve sensor sensitivity and selectivity. The numerical investigations are based on different iterations of the Minkowski fractal curve. In that iteration, the third iteration of the Minkowski fractal gives better results. The designed antenna is tested with breast cancer cell lines, and it resonates at a frequency of 2.35, 2.42, and 2.52 GHz for different dielectric constants and conductivity. The simulated design antenna is tested with different cancer cell lines like MDA-MB-231, MCF-7, and HS758-T to ensure its performance and selectivity. The measured result of the fabricated antenna shows that the antenna design resonates at the same frequency as the simulated antenna results.
Other Information
Published in: Applied Physics A
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1007/s00339-023-06648-4
Funding
Open Access funding provided by the Qatar National Library.
History
Language
- English
Publisher
Springer NaturePublication Year
- 2023
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Qatar University
- Center for Advanced Materials - QU