DPI_CDF: druggable protein identifier using cascade deep forest
Background
Drug targets in living beings perform pivotal roles in the discovery of potential drugs. Conventional wet-lab characterization of drug targets is although accurate but generally expensive, slow, and resource intensive. Therefore, computational methods are highly desirable as an alternative to expedite the large-scale identification of druggable proteins (DPs); however, the existing in silico predictor’s performance is still not satisfactory.
Methods
In this study, we developed a novel deep learning-based model DPI_CDF for predicting DPs based on protein sequence only. DPI_CDF utilizes evolutionary-based (i.e., histograms of oriented gradients for position-specific scoring matrix), physiochemical-based (i.e., component protein sequence representation), and compositional-based (i.e., normalized qualitative characteristic) properties of protein sequence to generate features. Then a hierarchical deep forest model fuses these three encoding schemes to build the proposed model DPI_CDF.
Results
The empirical outcomes on 10-fold cross-validation demonstrate that the proposed model achieved 99.13 % accuracy and 0.982 of Matthew’s-correlation-coefficient (MCC) on the training dataset. The generalization power of the trained model is further examined on an independent dataset and achieved 95.01% of maximum accuracy and 0.900 MCC. When compared to current state-of-the-art methods, DPI_CDF improves in terms of accuracy by 4.27% and 4.31% on training and testing datasets, respectively. We believe, DPI_CDF will support the research community to identify druggable proteins and escalate the drug discovery process.
Other Information
Published in: BMC Bioinformatics
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1186/s12859-024-05744-3
History
Language
- English
Publisher
Springer NaturePublication Year
- 2024
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Hamad Bin Khalifa University
- College of Science and Engineering - HBKU