Manara - Qatar Research Repository
Browse
10.1109_access.2022.3226942.pdf (1.95 MB)

Cyber-Physical System Demonstration of an Automated Shuttle-Conveyor-Belt Operation for Inventory Control of Multiple Stockpiles: A Proof of Concept

Download (1.95 MB)
journal contribution
submitted on 2023-08-30, 10:09 and posted on 2023-09-24, 05:00 authored by Mohammed Yaqot, Robert Eduard Franzoi, Ashhadul Islam, Brenno C. Menezes

Smart manufacturing in the so-called Industry 4.0 age pushes the research and development of laboratory-scale proof of concepts before its deployment in pilots and real-size equipment. As such, we present a cyber-physical system (CPS) demonstration in the mining industry field engineered to autonomously manage the handling of solids flowing in a conveyor-belt that drops materials in containers, forming multiple stockpiles per belt. The CPS operates to control multiple stockpiles’ inventories using mixed-integer optimization that minimizes the square deviation of the measured inventory to their targets (heights). Within the sensing-optimizing-actuating (SOA) cycle, the CPS demonstration is performed as follows. First, the sensing (data measurement, data processing, and system evaluation) uses a deep neural network in real-time to assess the level of materials stored in transparent containers. Second, the optimizing (mathematical programming, optimization techniques, and decision-making capabilities) is performed using a flowsheet network formulation called unit-operation-port-state superstructure (UOPSS) that permits a fast solution for the position-idle-time-varying discrete manipulated variables as operational schedules. Third, the actuating (cyber-physical integration) implements a physical actuation solution through an integrated CPS environment. According to the findings of our experimentation, stockpiling process control in a smart manufacturing context has enormous potentials to control multiple stockpiles’ inventory autonomously.

Other Information

Published in: IEEE Access
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1109/access.2022.3226942

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

IEEE

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU