Manara - Qatar Research Repository
Browse
10.1016_j.nbd.2023.105997.pdf (1.87 MB)

Cross-sectional proteomic expression in Parkinson's disease-related proteins in drug-naïve patients vs healthy controls with longitudinal clinical follow-up

Download (1.87 MB)
journal contribution
submitted on 2024-01-30, 09:10 and posted on 2024-01-30, 09:10 authored by Ilham Yahya Abdi, Michael Bartl, Mohammed Dakna, Houari Abdesselem, Nour Majbour, Claudia Trenkwalder, Omar El-Agnaf, Brit Mollenhauer

There is an urgent need to find reliable and accessible blood-based biomarkers for early diagnosis of Parkinson's disease (PD) correlating with clinical symptoms and displaying predictive potential to improve future clinical trials. This led us to a conduct large-scale proteomics approach using an advanced high-throughput proteomics technology to create a proteomic profile for PD. Over 1300 proteins were measured in serum samples from a de novo Parkinson's (DeNoPa) cohort made up of 85 deep clinically phenotyped drug-naïve de novo PD patients and 93 matched healthy controls (HC) with longitudinal clinical follow-up available of up to 8 years. The analysis identified 73 differentially expressed proteins (DEPs) of which 14 proteins were confirmed as stable potential diagnostic markers using machine learning tools. Among the DEPs identified, eight proteins—ALCAM, contactin 1, CD36, DUS3, NEGR1, Notch1, TrkB, and BTK— significantly correlated with longitudinal clinical scores including motor and non-motor symptom scores, cognitive function and depression scales, indicating potential predictive values for progression in PD among various phenotypes. Known functions of these proteins and their possible relation to the pathophysiology or symptomatology of PD were discussed and presented with a particular emphasis on the potential biological mechanisms involved, such as cell adhesion, axonal guidance and neuroinflammation, and T-cell activation. In conclusion, with the use of advance multiplex proteomic technology, a blood-based protein signature profile was identified from serum samples of a well-characterized PD cohort capable of potentially differentiating PD from HC and predicting clinical disease progression of related motor and non-motor PD symptoms. We thereby highlight the need to validate and further investigate these markers in future prospective cohorts and assess their possible PD-related mechanisms.

Other Information

Published in: Neurobiology of Disease
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.nbd.2023.105997

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Health and Life Sciences - HBKU
  • Qatar Biomedical Research Institute - HBKU
  • Neurological Disorders Research Center - QBRI

Usage metrics

    Qatar Biomedical Research Institute - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC