Manara - Qatar Research Repository
Browse

Comparative study between adsorption and membrane technologies for the removal of mercury

Download (2.08 MB)
journal contribution
submitted on 2023-10-05, 07:00 and posted on 2023-10-05, 08:56 authored by Hania Albatrni, Hazim Qiblawey, Muftah H. El-Naas

Mercury is one of the most detrimental by-products of industrial activities, such as mining and fossil fuel combustion. What differentiates this contaminant from other pollutants is its bioaccumulation and rapid distribution in the food chain. This review paper provides a comprehensive comparison between two competing wastewater treatment technologies for the removal of mercury in aqueous systems. Adsorption and membrane separation technologies both yield high percentage removals and high selectivity distinguishing them from other treatment options. This review offers a critical summary of recent research works dedicated to developing unique adsorbents and membranes for the removal of mercury from wastewaters. The assessment of the two technologies is based on the removal performance, regeneration efficiency, selectivity and effect of experimental conditions. This work reveals that both techniques can be further enhanced by the addition of functional groups such as thiols where sulfur serves as a strong binding site for mercury ions. However, the main issues that normally entail adsorption and membrane separation are waste disposal and fouling respectively. Given that the adsorption process offers several benefits in comparison to membrane technologies including low capital and operating costs, ease of operation in addition to the potential application of a wide range of solid media for the removal of hazardous substances, the adsorption process is the feasible option.

Other Information

Published in: Separation and Purification Technology
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.seppur.2020.117833

Funding

Open Access funding provided by the Qatar National Library

History

Language

  • English

Publisher

Elsevier BV

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Qatar University
  • College of Engineering - QU
  • Gas Processing Center - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC