Manara - Qatar Research Repository
Browse

Boosting the visibility of services in microservice architecture

Download (976.59 kB)
journal contribution
submitted on 2024-01-11, 10:48 and posted on 2024-01-15, 10:35 authored by Ahmet Vedat Tokmak, Akhan Akbulut, Cagatay Catal

Monolithic software architectures are no longer sufficient for the highly complex software-intensive systems, which modern society depends on. Service Oriented Architecture (SOA) surpassed monolithic architecture due to its reusability, platform independency, ease of maintenance, and scalability. Recent SOA implementations made use of cloud-native architectural approaches such as microservice architecture, which has resulted in a new challenge: the discovery difficulties of services. One way to dynamically discover and route traffic to service instances is to use a service discovery tool to locate the Internet Protocol (IP) address and port number of a microservice. In the event that replicated microservice instances are found to provide the same function, it is crucial to select the right microservice that provides the best overall experience for the end-user. Parameters including success rate, efficiency, delay time, and response time play a vital role in establishing a microservice’s Quality of Service (QoS). These assessments can be performed by means of a live health-check service, or, alternatively, by making a prediction of the current state of affairs with the application of machine learning-based approaches. In this research, we evaluate the performance of several classification algorithms for estimating the quality of microservices using the QWS dataset containing traffic data of 2505 microservices. Our research also analyzed the boosting algorithms, namely Gradient Boost, XGBoost, LightGBM, and CatBoost to improve the overall performance. We utilized parameter optimization techniques, namely Grid Search, Random Search, Bayes Search, Halvin Grid Search, and Halvin Random Search to fine-tune the hyperparameters of our classifier models. Experimental results demonstrated that the CatBoost algorithm achieved the highest level of accuracy (90.42%) in predicting microservice quality.

Other Information

Published in: Cluster Computing
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1007/s10586-023-04132-5

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • College of Engineering - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC