Manara - Qatar Research Repository
Browse

Bond durability and service life prediction of BFRP bars to steel FRC under aggressive environmental conditions

Download (4.58 MB)
journal contribution
submitted on 2023-10-31, 10:27 and posted on 2023-10-31, 11:54 authored by Alaa Taha, Wael Alnahhal

This study presents an experimental investigation on the bond durability of helically wrapped basalt fiber reinforced polymer (BFRP) bars embedded in plain and steel fiber reinforced concrete (SFRC) under the combined effect of simulated oceanic environment and elevated temperatures. A total of sixty-three pullout specimens were tested to study the effect of concrete type (plain and SFRC), immersion temperature (35 °C and 60 °C), immersion duration (30, 60, and 90 days), and fiber volume fraction (Vf) of steel fibers (0.5% and 1%). The bond durability of the used bars was examined based on the bond strength and mode of failure. The BFRP bars at the interface along the embedment length with concrete were analyzed using scanning electron microscopy. In addition, the BPE and CMR models for bond-slip behavior were calibrated considering the immersion temperature, concrete type, and exposure duration. The experimental results revealed that the pullout specimens with Vf = 1% showed higher bond durability performance than specimens with Vf = 0.5%, particularly at high temperatures. Furthermore, the CMR model showed better correlation with the experimental data than the BPE model. Moreover, the 50 years service life prediction showed bond strength retentions of BFRP bars that ranged from 54% to 86% depending on the type of concrete (plain and SFRC), surrounding mean annual temperature (5 °C to 35 °C), and degree of moisture (dry, moist, and moisture saturated).

Other Information

Published in: Composite Structures
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.compstruct.2021.114034

Funding

Open Access funding provided by the Qatar National Library

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Qatar University
  • College of Engineering - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC