Manara - Qatar Research Repository
Browse

Bimetallic Pd-Co Nanoparticles Supported on Nitrogen-Doped Reduced Graphene Oxide as Efficient Electrocatalysts for Formic Acid Electrooxidation

Download (4.59 MB)
journal contribution
submitted on 2024-09-10, 06:15 and posted on 2024-09-10, 06:16 authored by SK Safdar Hossain, Mohammad Mudassir Alwi, Junaid Saleem, Hussain Taj Al-Hashem, Gordon McKay, Said Mansour, Syed Sadiq Ali

In this work, bimetallic PdxCoy nanoparticles supported on nitrogen-doped reduced graphene oxide catalysts were synthesized and tested for formic acid oxidation as potentially efficient and durable electrocatalysts. Graphene oxide was nitrogen doped through hydrothermal chemical reduction with urea as a nitrogen source. The PdxCoy nanoparticles were deposited on the nitrogen-doped graphene oxide support using the impregnation-reduction method with sodium borohydride as a reducing agent and sodium citrate dihydrate as a stabilizing agent. The structural features, such as phases, composition, oxidation states, and particle sizes, of the nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy–energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The Pd nanoparticle sizes in Pd1Co1/N-rGO, Pd/N-rGO, and Pd1Co1/CNT were 3.5, 12.51, and 4.62 nm, respectively. The electrochemical performance of the catalysts was determined by CO stripping, cyclic voltammetry, and chronoamperometry. Pd1Co1/N-rGO showed the highest mass activity of 4833.12 mA–1 mg Pd, which was twice that of Pd1Co1/CNT. Moreover, Pd1Co1/N-rGO showed a steady-state current density of 700 mA–1 mg Pd after 5000 s in chronoamperometry carried out at +0.35 V. Apart from the well-known bifunctional effect of Co, nitrogen-doped graphene contributed to the performance enhancement of the Pd1Co1/N-rGO catalyst.


Other Information

Published in: Catalysts
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/catal11080910

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU
  • Qatar Environment and Energy Research Institute - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC