Manara - Qatar Research Repository
Browse

Benchmark on a large cohort for sleep-wake classification with machine learning techniques

Version 2 2024-11-26, 05:07
Version 1 2022-11-22, 21:17
journal contribution
posted on 2024-11-26, 05:07 authored by Joao Palotti, Raghvendra Mall, Michael Aupetit, Michael Rueschman, Meghna Singh, Aarti Sathyanarayana, Shahrad Taheri, Luis Fernandez-Luque

Accurately measuring sleep and its quality with polysomnography (PSG) is an expensive task. Actigraphy, an alternative, has been proven cheap and relatively accurate. However, the largest experiments conducted to date, have had only hundreds of participants. In this work, we processed the data of the recently published Multi-Ethnic Study of Atherosclerosis (MESA) Sleep study to have both PSG and actigraphy data synchronized. We propose the adoption of this publicly available large dataset, which is at least one order of magnitude larger than any other dataset, to systematically compare existing methods for the detection of sleep-wake stages, thus fostering the creation of new algorithms. We also implemented and compared state-of-the-art methods to score sleep-wake stages, which range from the widely used traditional algorithms to recent machine learning approaches. We identified among the traditional algorithms, two approaches that perform better than the algorithm implemented by the actigraphy device used in the MESA Sleep experiments. The performance, in regards to accuracy and F1 score of the machine learning algorithms, was also superior to the device’s native algorithm and comparable to human annotation. Future research in developing new sleep-wake scoring algorithms, in particular, machine learning approaches, will be highly facilitated by the cohort used here. We exemplify this potential by showing that two particular deep-learning architectures, CNN and LSTM, among the many recently created, can achieve accuracy scores significantly higher than other methods for the same tasks.

Other Information

Published in: npj Digital Medicine
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: http://dx.doi.org/10.1038/s41746-019-0126-9

Funding

Open access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Computing Research Institute - HBKU
  • Weill Cornell Medicine - Qatar

Usage metrics

    Qatar Computing Research Institute - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC