Manara - Qatar Research Repository
Browse
10.1109_access.2020.3025622.pdf (1.2 MB)

BAD: A Blockchain Anomaly Detection Solution

Download (1.2 MB)
journal contribution
submitted on 2023-08-24, 10:08 and posted on 2023-09-20, 10:25 authored by Matteo Signorini, Matteo Pontecorvi, Wael Kanoun, Roberto Di Pietro

Anomaly detection tools play a role of paramount importance in protecting networks and systems from unforeseen attacks, usually by automatically recognizing and filtering out anomalous activities. Over the years, different approaches have been designed, all focused on lowering the false positive rate. However, no proposal has addressed attacks specifically targeting blockchain-based systems. In this paper, we present BAD: Blockchain Anomaly Detection. This is the first solution, to the best of our knowledge, that is tailored to detect anomalies in blockchain-based systems. BAD is a complete framework, relying on several components leveraging, at its core, blockchain meta-data in order to collect potentially malicious activities. BAD enjoys some unique features: (i) it is distributed (thus avoiding any central point of failure); (ii) it is tamper-proof (making it impossible for a malicious software to remove or to alter its own traces); (iii) it is trusted (any behavioral data is collected and verified by the majority of the network); and, (iv) it is private (avoiding any third party to collect/analyze/store sensitive information). Our proposal is described in detail and validated via both experimental results and analysis, that highlight the quality and viability of our Blockchain Anomaly Detection solution.

Other Information

Published in: IEEE Access
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1109/access.2020.3025622

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

IEEE

Publication Year

  • 2020

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU