Manara - Qatar Research Repository
Browse

Artificial Intelligence in Predicting Cardiac Arrest: Scoping Review

Download (361.64 kB)
journal contribution
submitted on 2024-05-08, 08:50 and posted on 2024-05-08, 08:50 authored by Asma Alamgir, Osama Mousa, Zubair Shah

Background

Cardiac arrest is a life-threatening cessation of activity in the heart. Early prediction of cardiac arrest is important, as it allows for the necessary measures to be taken to prevent or intervene during the onset. Artificial intelligence (AI) technologies and big data have been increasingly used to enhance the ability to predict and prepare for the patients at risk.

Objective

This study aims to explore the use of AI technology in predicting cardiac arrest as reported in the literature.

Methods

A scoping review was conducted in line with the guidelines of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) extension for scoping reviews. Scopus, ScienceDirect, Embase, the Institute of Electrical and Electronics Engineers, and Google Scholar were searched to identify relevant studies. Backward reference list checks of the included studies were also conducted. Study selection and data extraction were independently conducted by 2 reviewers. Data extracted from the included studies were synthesized narratively.

Results

Out of 697 citations retrieved, 41 studies were included in the review, and 6 were added after backward citation checking. The included studies reported the use of AI in the prediction of cardiac arrest. Of the 47 studies, we were able to classify the approaches taken by the studies into 3 different categories: 26 (55%) studies predicted cardiac arrest by analyzing specific parameters or variables of the patients, whereas 16 (34%) studies developed an AI-based warning system. The remaining 11% (5/47) of studies focused on distinguishing patients at high risk of cardiac arrest from patients who were not at risk. Two studies focused on the pediatric population, and the rest focused on adults (45/47, 96%). Most of the studies used data sets with a size of <10,000 samples (32/47, 68%). Machine learning models were the most prominent branch of AI used in the prediction of cardiac arrest in the studies (38/47, 81%), and the most used algorithm was the neural network (23/47, 49%). K-fold cross-validation was the most used algorithm evaluation tool reported in the studies (24/47, 51%).

Conclusions

AI is extensively used to predict cardiac arrest in different patient settings. Technology is expected to play an integral role in improving cardiac medicine. There is a need for more reviews to learn the obstacles to the implementation of AI technologies in clinical settings. Moreover, research focusing on how to best provide clinicians with support to understand, adapt, and implement this technology in their practice is also necessary.

Other Information

Published in: JMIR Medical Informatics
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.2196/30798

History

Language

  • English

Publisher

JMIR Publications

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Methodology

A scoping review was conducted in line with the guidelines of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) extension for scoping reviews. Scopus, ScienceDirect, Embase, the Institute of Electrical and Electronics Engineers, and Google Scholar were searched to identify relevant studies. Backward reference list checks of the included studies were also conducted. Study selection and data extraction were independently conducted by 2 reviewers. Data extracted from the included studies were synthesized narratively.

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC