Application of Li-, Mg-, Ba-, Sr-, Ca-, and Sn-doped ceria for solar-driven thermochemical conversion of carbon dioxide
The redox reactivity of the Li-, Mg-, Ca-, Sr-, Ba-, and Sn-doped ceria (Ce0.9A0.1O2−δ) toward thermochemical CO2 splitting is investigated. Proposed Ce0.9A0.1O2−δ materials are prepared via co-precipitation of the hydroxide technique. The composition, morphology, and the average particle size of the Ce0.9A0.1O2−δ materials are determined by using suitable characterization methods. By utilizing a thermogravimetric analyzer setup, the long-term redox performance of each Ce0.9A0.1O2−δ material is estimated. The results obtained indicate that all the Ce0.9A0.1O2−δ materials are able to produce steady amounts of O2 and CO from cycle 4 to cycle 10. Based on the average $$ n_{{{\text{O}}_{2} }} $$nO2 released and $$ n_{\text{CO}} $$nCO produced, the Ce0.899Sn0.102O2.002 and Ce0.895Ca0.099O1.889 are observed to be the top and bottom-most choices. When compared with the CeO2 material, all Ce0.9A0.1O2−δ materials showed elevated levels of O2 release and CO production.
Other Information
Published in: Journal of Materials Science
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: http://dx.doi.org/10.1007/s10853-020-04875-1
History
Language
- English
Publisher
Springer Science and Business Media LLCPublication Year
- 2020
Institution affiliated with
- Qatar University